Stellar Black Holes and Compact Stellar Remnants
Abstract
The recent observations of gravitational waves (GWs) by the LIGO-Virgo-KAGRA collaboration (LVK) have provided a new opportunity for studying our Universe. By detecting several merging events of black holes (BHs), LVK has spurred the astronomical community to improve theoretical models of single, binary, and multiple star evolution in order to better understand the formation of binary black hole (BBH) systems and interpret their observed properties. The final BBH system configuration before the merger depends on several processes, including those related to the evolution of the inner stellar structure and those due to the interaction with the companion and the environment (such as in stellar clusters). This chapter provides a summary of the formation scenarios of stellar BHs in single, binary, and multiple systems. We review all the important physical processes that affect the formation of BHs and discuss the methodologies used to detect these elusive objects and constrain their properties.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- 10.48550/arXiv.2311.15778
- arXiv:
- arXiv:2311.15778
- Bibcode:
- 2023arXiv231115778C
- Keywords:
-
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena;
- General Relativity and Quantum Cosmology
- E-Print:
- To appear in Chapter 1 in the book Black Holes in the Era of Gravitational Wave Astronomy, ed. Arca Sedda, Bortolas, Spera, pub. Elsevier. All authors equally contributed to the chapter. Figures from other publications have been reproduced with permission