Protonated hydrogen cyanide as a tracer of pristine molecular gas
Abstract
Context. Protonated hydrogen cyanide, HCNH+, plays a fundamental role in astrochemistry because it is an intermediary in gas-phase ion-neutral reactions within cold molecular clouds. However, the impact of the environment on the chemistry of HCNH+ remains poorly understood.
Aims: We aim to study HCNH+, HCN, and HNC, as well as two other chemically related ions, HCO+ and N2H+, in different star formation regions in order to investigate how the environment influences the chemistry of HCNH+.
Methods: With the IRAM 30 m and APEX 12 m telescopes, we carried out HCNH+, H13CN, HN13C, H13CO+, and N2H+ imaging observations toward two dark clouds, the Serpens filament and Serpens South, both of which harbor sites of star formation that include protostellar objects and regions that are quiescent.
Results: We report the first robust distribution of HCNH+ in the Serpens filament and in Serpens South. Our data suggest that HCNH+ is abundant in cold and quiescent regions but is deficient in active star-forming regions. The observed HCNH+ fractional abundances relative to H2 range from 3.1 × 10−11 in protostellar cores to 5.9 × 10−10 in prestellar cores, and the HCNH+ abundance generally decreases with increasing H2 column density, which suggests that HCNH+ coevolves with cloud cores. Our observations and modeling results suggest that the abundance of HCNH+ in cold molecular clouds is strongly dependent on the H2 number density. The decrease in the abundance of HCNH+ is caused by the fact that its main precursors (e.g., HCN and HNC) undergo freeze-out as the number density of H2 increases. However, current chemical models cannot explain other observed trends, such as the fact that the abundance of HCNH+ shows an anticorrelation with that of HCN and HNC but a positive correlation with that of N2H+ in the southern part of Serpens South's northern clump. This indicates that additional chemical pathways have to be invoked for the formation of HCNH+ via molecules such as N2 in regions in which HCN and HNC freeze out.
Conclusions: Both the fact that HCNH+ is most abundant in molecular cores prior to gravitational collapse and the fact that low-J HCNH+ transitions have very low H2 critical densities make this molecular ion an excellent probe of pristine molecular gas.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2308.15521
- Bibcode:
- 2023A&A...679A..39G
- Keywords:
-
- ISM: clouds;
- radio lines: ISM;
- astrochemistry;
- ISM: molecules;
- ISM: abundances;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 25 pages, 26 figures, accepted for publication in A&