Asteroseismology with the Roman Galactic Bulge Time-Domain Survey
Abstract
Asteroseismology has transformed stellar astrophysics. Red giant asteroseismology is a prime example, with oscillation periods and amplitudes that are readily detectable with time-domain space-based telescopes. These oscillations can be used to infer masses, ages and radii for large numbers of stars, providing unique constraints on stellar populations in our galaxy. The cadence, duration, and spatial resolution of the Roman galactic bulge time-domain survey (GBTDS) are well-suited for asteroseismology and will probe an important population not studied by prior missions. We identify photometric precision as a key requirement for realizing the potential of asteroseismology with Roman. A precision of 1 mmag per 15-min cadence or better for saturated stars will enable detections of the populous red clump star population in the Galactic bulge. If the survey efficiency is better than expected, we argue for repeat observations of the same fields to improve photometric precision, or covering additional fields to expand the stellar population reach if the photometric precision for saturated stars is better than 1 mmag. Asteroseismology is relatively insensitive to the timing of the observations during the mission, and the prime red clump targets can be observed in a single 70 day campaign in any given field. Complementary stellar characterization, particularly astrometry tied to the Gaia system, will also dramatically expand the diagnostic power of asteroseismology. We also highlight synergies to Roman GBTDS exoplanet science using transits and microlensing.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- 10.48550/arXiv.2307.03237
- arXiv:
- arXiv:2307.03237
- Bibcode:
- 2023arXiv230703237H
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- Roman Core Community Survey White Paper, 3 pages, 4 figures