Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS): Diverse outcomes of binary-disk interactions
Abstract
Context. Circumstellar disks play an essential role in the outcomes of planet formation. Disks do not evolve in isolation, as about half of solar-type stars were born in binary or multiple systems. The presence of stellar companions modifies the morphology and evolution of disks, potentially resulting in a different planet population. Resolving disks in binary systems provides the opportunity to examine the influence of stellar companions on the outcomes of planet formation.
Aims: We aim to investigate and compare disks in stellar multiple systems with near-infrared scattered-light imaging as part of the Disk Evolution Study Through Imaging of Nearby Young Stars (DESTINYS) large program. In particular, we present observations of circumstellar disks in three systems, namely, CHX 22, S CrA, and HP Cha.
Methods: We used polarimetric differential imaging with SPHERE/IRDIS at the VLT to search for scattered light from the circum-stellar disks in these multiple systems. We performed astrometric and orbit analyses for the stellar companions using archival HST, VLT/NACO, and SPHERE data to better understand the interplay between disks and companions.
Results: Combined with the age and orbital constraints, the observed disk structures in scattered light provide insights into the evolutionary history and the impact of the stellar companions. The small grains in CHX 22 form a tail-like structure surrounding the close binary, which likely results from a close encounter and capture of a cloudlet. S CrA shows intricate structures (tentative ringed and spiral features) in the circumprimary disk as a possible consequence of perturbations by companions. The circumsecondary disk is truncated and connected to the primary disk via a streamer, suggesting tidal interactions. In HP Cha, the primary disk is less disturbed and features a tenuous streamer, through which the material flows toward the companions.
Conclusions: The comparison of the three systems spans a wide range of binary separation (50-500 au) and illustrates the decreasing influence on disk structures with the distance of companions. This agrees with the statistical analysis of the exoplanet population in binaries, that planet formation is likely obstructed around close binary systems, while it is not suppressed in wide binaries.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- April 2023
- DOI:
- 10.1051/0004-6361/202245577
- arXiv:
- arXiv:2302.12824
- Bibcode:
- 2023A&A...672A.145Z
- Keywords:
-
- protoplanetary disks;
- binaries: general;
- techniques: high angular resolution;
- techniques: polarimetric;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 19 pages, 6 figures, accpeted for publication in A&