On the growth rate inequality for self-maps of the sphere
Abstract
Let $S^m = \{x_0^2 + x_1^2 + \cdots + x_m^2 = 1\}$ and $P = \{x_0 = x_1 = 0\} \cap S^m$. Suppose that $f$ is a self--map of $S^m$ such that $f^{-1}(P) = P$ and $|\mathrm{deg}(f_{|P})| < |\mathrm{deg}(f)|$. Then, the number of fixed points of $f^n$ grows at least exponentially with base $|d| > 1$, where $d = \mathrm{deg}(f)/\mathrm{deg}(f_{|P}) \in \mathbb Z$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2023
- DOI:
- 10.48550/arXiv.2301.08543
- arXiv:
- arXiv:2301.08543
- Bibcode:
- 2023arXiv230108543B
- Keywords:
-
- Mathematics - Dynamical Systems
- E-Print:
- 10 pages, 1 figure