No plateau observed in late-time near-infrared observations of the underluminous Type Ia supernova 2021qvv
Abstract
Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170-250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- December 2023
- DOI:
- arXiv:
- arXiv:2306.12858
- Bibcode:
- 2023MNRAS.526.2977G
- Keywords:
-
- methods: observational;
- supernovae: general;
- supernovae: individual: SN2021qvv;
- white dwarfs;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- Accepted for publication in MNRAS (14 pages, 9 figures)