On the survivability of a population of gas giant planets on wide orbits
Abstract
The existence of giant planets on wide orbits ($\stackrel{\gt }{_\sim }100\rm ~au$) challenge planet formation theories; the core accretion scenario has difficulty in forming them, whereas the disc instability model forms an overabundance of them that is not seen observations. We perform N-body simulations investigating the effect of close stellar encounters (≤1200 au) on systems hosting wide-orbit giant planets and the extent at which such interactions may disrupt the initial wide-orbit planet population. We find that the effect of an interaction on the orbit of a planet is stronger for high-mass, low-velocity perturbers, as expected. We find that due to just a single encounter there is a $\sim 17~{{\ \rm per\ cent}}$ chance that the wide-orbit giant planet is liberated in the field, a $\sim 10~{{\ \rm per\ cent}}$ chance it is scattered significantly outwards, and a $\sim 6~{{\ \rm per\ cent}}$ chance it is significantly scattered inwards. Moreover, there is a $\sim 21~{{\ \rm per\ cent}}$ chance that its eccentricity is excited to e > 0.1, making it more prone to disruption in subsequent encounters. The results strongly suggest that the effect of even a single stellar encounter is significant in disrupting the primordial wide-orbit giant planet population; in reality the effect will be even more prominent, as in a young star-forming region more such interactions are expected to occur. We conclude that the low occurrence rate of wide-orbit planets revealed by observational surveys does not exclude the possibility that such planetary systems are initially abundant, and therefore the disc-instability model may be a plausible scenario for their formation.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2307.14908
- Bibcode:
- 2023MNRAS.525.1912C
- Keywords:
-
- planets and satellites: dynamical evolution and stability;
- planets and satellites: formation;
- planets and satellites: gaseous planets;
- planets and satellites: physical evolution;
- planet-star interactions;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 10 pages, 9 figures