Gaia21bty: An EXor light curve exhibiting a FUor spectrum
Abstract
Gaia21bty, a pre-main-sequence star that previously had shown aperiodic dips in its light curve, underwent a considerable ΔG ≈ 2.9 mag brightening that occurred over a few months between 2020 October and 2021 February. The Gaia light curve shows that the star remained near maximum brightness for about 4-6 months, and then started slowly fading over the next 2 yr, with at least three superimposed ~1 mag sudden rebrightening events. Whereas the amplitude and duration of the maximum is typical for EX Lupi-type stars, optical and near-infrared spectra obtained at the maximum are dominated by features which are typical for FU Ori-type stars (FUors). Modelling of the accretion disc at the maximum indicates that the disc bolometric luminosity is 43 L⊙ and the mass accretion rate is 2.5 × 10-5 M⊙ yr-1, which are typical values for FUors even considering the large uncertainty in the distance ($1.7_{-0.4}^{+0.8}$ kpc). Further monitoring is necessary to understand the cause of the quick brightness decline, the rebrightening, and the other post-outburst light changes, as our multicolour photometric data suggest that they could be caused by a long and discontinuous obscuration event. We speculate that the outburst might have induced large-scale inhomogeneous dust condensations in the line of sight leading to such phenomena, whilst the FUor outburst continues behind the opaque screen.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- October 2023
- DOI:
- 10.1093/mnras/stad2135
- arXiv:
- arXiv:2307.08802
- Bibcode:
- 2023MNRAS.524.5548S
- Keywords:
-
- accretion;
- accretion discs;
- stars: formation;
- stars: pre-main-sequence;
- stars: variables: T Tauri;
- Herbig Ae/Be;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- Accepted to MNRAS