TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet
Abstract
The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32−1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion.
Based on observations made with ESO 3.6-m telescope at La Silla Observatory under programme IDs 1102.C-0923 and 60.A-9709. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- July 2023
- DOI:
- 10.1051/0004-6361/202244617
- arXiv:
- arXiv:2305.15565
- Bibcode:
- 2023A&A...675A.115K
- Keywords:
-
- planetary systems;
- planets and satellites: individual: TOI-1130;
- techniques: photometric;
- techniques: radial velocities;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 19 pages, Accepted to A&