Improving Zero-Shot Models with Label Distribution Priors
Abstract
Labeling large image datasets with attributes such as facial age or object type is tedious and sometimes infeasible. Supervised machine learning methods provide a highly accurate solution, but require manual labels which are often unavailable. Zero-shot models (e.g., CLIP) do not require manual labels but are not as accurate as supervised ones, particularly when the attribute is numeric. We propose a new approach, CLIPPR (CLIP with Priors), which adapts zero-shot models for regression and classification on unlabelled datasets. Our method does not use any annotated images. Instead, we assume a prior over the label distribution in the dataset. We then train an adapter network on top of CLIP under two competing objectives: i) minimal change of predictions from the original CLIP model ii) minimal distance between predicted and prior distribution of labels. Additionally, we present a novel approach for selecting prompts for Vision & Language models using a distributional prior. Our method is effective and presents a significant improvement over the original model. We demonstrate an improvement of 28% in mean absolute error on the UTK age regression task. We also present promising results for classification benchmarks, improving the classification accuracy on the ImageNet dataset by 2.83%, without using any labels.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.00784
- Bibcode:
- 2022arXiv221200784K
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Machine Learning