Random Transpositions on Contingency Tables
Abstract
Contingency tables are useful objects in statistics for representing 2-way data. With fixed row and column sums, and a total of $n$ entries, contingency tables correspond to parabolic double cosets of $S_n$. The uniform distribution on $S_n$ induces the Fisher-Yates distribution, classical for its use in the chi-squared test for independence. A Markov chain on $S_n$ can then induce a random process on the space of contingency tables through the double cosets correspondence. The random transpositions Markov chain on $S_n$ induces a natural `swap' Markov chain on the space of contingency tables; the stationary distribution of the Markov chain is the Fisher-Yates distribution. This paper describes this Markov chain and shows that the eigenfunctions are orthogonal polynomials of the Fisher-Yates distribution. Results for the mixing time are discussed, as well as connections with sampling from the uniform distribution on contingency tables, and data analysis.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- 10.48550/arXiv.2208.10700
- arXiv:
- arXiv:2208.10700
- Bibcode:
- 2022arXiv220810700S
- Keywords:
-
- Mathematics - Statistics Theory;
- Mathematics - Probability
- E-Print:
- 39 pages, 1 figure