Exact lower and upper bounds for shifts of Gaussian measures
Abstract
Exact upper and lower bounds on the ratio $\mathsf{E}w(\mathbf{X}-\mathbf{v})/\mathsf{E}w(\mathbf{X})$ for a centered Gaussian random vector $\mathbf{X}$ in $\mathbb{R}^n$, as well as bounds on the rate of change of $\mathsf{E}w(\mathbf{X}-t\mathbf{v})$ in $t$, where $w\colon\mathbb{R}^n\to[0,\infty)$ is any even unimodal function and $\mathbf{v}$ is any vector in $\mathbb{R}^n$. As a corollary of such results, exact upper and lower bounds on the power function of statistical tests for the mean of a multivariate normal distribution are given.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- arXiv:
- arXiv:2205.09266
- Bibcode:
- 2022arXiv220509266P
- Keywords:
-
- Mathematics - Probability;
- Mathematics - Statistics Theory;
- 60E15;
- 62E17;
- 62H10;
- 62H15;
- 26B25;
- 26D10;
- 26D15;
- 28C20
- E-Print:
- 10 pages