$P$-strict promotion and $Q$-partition rowmotion: the graded case
Abstract
Promotion and rowmotion are intriguing actions in dynamical algebraic combinatorics which have inspired much work in recent years. In this paper, we study $P$-strict labelings of a finite, graded poset $P$ of rank $n$ and labels at most $q$, which generalize semistandard Young tableaux with $n$ rows and entries at most $q$, under promotion. These $P$-strict labelings are in equivariant bijection with $Q$-partitions under rowmotion, where $Q$ equals the product of $P$ and a chain of $q-n-1$ elements. We study the case where $P$ equals the product of chains in detail, yielding new homomesy and order results in the realm of tableaux and beyond. Furthermore, we apply the bijection to the cases in which $P$ is a minuscule poset and when $P$ is the three element $V$ poset. Finally, we give resonance results for promotion on $P$-strict labelings and rowmotion on $Q$-partitions.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- 10.48550/arXiv.2205.04938
- arXiv:
- arXiv:2205.04938
- Bibcode:
- 2022arXiv220504938B
- Keywords:
-
- Mathematics - Combinatorics;
- 05E18
- E-Print:
- 23 pages, 4 figures