On Double Hölder Regularity of the Hydrodynamic Pressure in Bounded Domains
Abstract
We prove that the hydrodynamic pressure $p$ associated to the velocity $u\in C^\theta(\Omega)$, $\theta\in(0,1)$, of an inviscid incompressible fluid in a bounded and simply connected domain $\Omega\subset \mathbb R^d$ with $C^{2+}$ boundary satisfies $p\in C^{\theta}(\Omega)$ for $\theta \leq \frac12$ and $p\in C^{1,2\theta-1}(\Omega)$ for $\theta>\frac12$. Moreover, when $\partial \Omega\in C^{3+}$, we prove that an almost double Hölder regularity $p\in C^{2\theta-}(\Omega)$ holds even for $\theta<\frac12$. This extends and improves the recent result of Bardos and Titi obtained in the planar case to every dimension $d\ge2$ and it also doubles the pressure regularity. Differently from Bardos and Titi, we do not introduce a new boundary condition for the pressure, but instead work with the natural one. In the boundary-free case of the $d$-dimensional torus, we show that the double regularity of the pressure can be actually achieved under the weaker assumption that the divergence of the velocity is sufficiently regular, thus not necessarily zero.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- 10.48550/arXiv.2205.00929
- arXiv:
- arXiv:2205.00929
- Bibcode:
- 2022arXiv220500929D
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- Improved version after referee comments. Version accepted in Calc Var &