TOI-1670 b and c: An Inner Sub-Neptune with an Outer Warm Jupiter Unlikely to Have Originated from High-eccentricity Migration
Abstract
We report the discovery of two transiting planets around the bright (V = 9.9 mag) main-sequence F7 star TOI-1670 by the Transiting Exoplanet Survey Satellite. TOI-1670 b is a sub-Neptune ( ${R}_{{\rm{b}}}={2.06}_{-0.15}^{+0.19}$ R ⊕) on a 10.9 day orbit, and TOI-1670 c is a warm Jupiter ( ${R}_{{\rm{c}}}={0.987}_{-0.025}^{+0.025}$ R Jup) on a 40.7 day orbit. Using radial velocity observations gathered with the Tull Coudé Spectrograph on the Harlan J. Smith telescope and HARPS-N on the Telescopio Nazionale Galileo, we find a planet mass of ${M}_{{\rm{c}}}={0.63}_{-0.08}^{+0.09}$ M Jup for the outer warm Jupiter, implying a mean density of ${\rho }_{c}={0.81}_{-0.11}^{+0.13}$ g cm-3. The inner sub-Neptune is undetected in our radial velocity data (M b < 0.13 M Jup at the 99% confidence level). Multiplanet systems like TOI-1670 hosting an outer warm Jupiter on a nearly circular orbit ( ${e}_{{\rm{c}}}={0.09}_{-0.04}^{+0.05}$ ) and one or more inner coplanar planets are more consistent with "gentle" formation mechanisms such as disk migration or in situ formation rather than high-eccentricity migration. Of the 11 known systems with a warm Jupiter and a smaller inner companion, eight (73%) are near a low-order mean-motion resonance, which can be a signature of migration. TOI-1670 joins two other systems (27% of this subsample) with period commensurabilities greater than 3, a common feature of in situ formation or halted inward migration. TOI-1670 and the handful of similar systems support a diversity of formation pathways for warm Jupiters.
- Publication:
-
The Astronomical Journal
- Pub Date:
- May 2022
- DOI:
- arXiv:
- arXiv:2203.04334
- Bibcode:
- 2022AJ....163..225T
- Keywords:
-
- Exoplanet astronomy;
- Radial velocity;
- Exoplanet formation;
- Transit photometry;
- 486;
- 1332;
- 492;
- 1709;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 23 pages, 9 figures, accepted for publication in AJ