Photodissociation and X-Ray-Dominated Regions
Abstract
The radiation from stars and active galactic nuclei (AGNs) creates photodissociation regions (PDRs) and X-ray-dominated regions (XDRs), where the chemistry or heating is dominated by far-ultraviolet (FUV) radiation or X-ray radiation, respectively. PDRs include a wide range of environments, from the diffuse interstellar medium (ISM) to dense star-forming regions. XDRs are found in the center of galaxies hosting AGNs, in protostellar disks, and in the vicinity of X-ray binaries. In this review, we describe the dominant thermal, chemical, and radiation transfer processes in PDRs and XDRs, as well as give a brief description of models and their use for analyzing observations. We then present recent results from Milky Way, nearby extragalactic, and high-redshift observations.
Several important results include the following: Velocity-resolved PDR lines reveal the kinematics of the neutral atomic gas and provide constraints on the stellar feedback process. Their interpretation is, however, in dispute, as observations suggest a prominent role for stellar winds, whereas they are much less important in theoretical models. A significant fraction of molecular mass resides in CO-dark gas especially in low-metallicity and/or highly irradiated environments. The CO ladder and [CI]/[CII] ratios can determine if FUV or X rays dominate the ISM heating of extragalactic sources. With Atacama Large Millimeter/submillimeter Array, PDR and XDR tracers are now routinely detected on galactic scales over cosmic time. This makes it possible to link the star-formation history of the Universe to the evolution of the physical and chemical properties of the gas.- Publication:
-
Annual Review of Astronomy and Astrophysics
- Pub Date:
- August 2022
- DOI:
- arXiv:
- arXiv:2202.05867
- Bibcode:
- 2022ARA&A..60..247W
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Submitted to Annual Reviews of Astronomy and Astrophysics, Volume 60, 2022