Holomorphicity of totally geodesic Kobayashi isometry between bounded symmetric domains
Abstract
In this paper, we study the holomorphicity of totally geodesic Kobayashi isometric embeddings between bounded symmetric domains. First we show that for a $C^1$-smooth totally geodesic Kobayashi isometric embedding $f\colon \Omega\to\Omega'$ where $\Omega$, $\Omega'$ are bounded symmetric domains, if $\Omega$ is irreducible and $\text{rank}(\Omega) \geq \text{rank}(\Omega')$ or more generally, $\text{rank}(\Omega) \geq \text{rank}(f_*v)$ for any tangent vector $v$ of $\Omega$, then $f$ is either holomorphic or anti-holomorphic. Secondly we characterize $C^1$ Kobayashi isometries from a reducible bounded symmetric domain to itself.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- 10.48550/arXiv.2202.05473
- arXiv:
- arXiv:2202.05473
- Bibcode:
- 2022arXiv220205473K
- Keywords:
-
- Mathematics - Complex Variables
- E-Print:
- 20 pages