Continuous bilinear maps on Banach $\star$-algebras
Abstract
Let $A$ be a unital Banach $\star$-algebra with unity $1$, $X$ be a Banach space and $\phi : A \times A \to X$ be a continuous bilinear map. We characterize the structure of $\phi$ where it satisfies any of the following properties: $$a,b \in A, \,\,\, a b^\star = z \, \,(a^\star b=z)\Rightarrow \phi ( a , b^\star ) = \phi ( z, 1 ) \, \, (\phi ( a^\star , b) = \phi ( z, 1 ));$$ $$a,b \in A, \,\,\, a b^\star = z \, \, (a^\star b=z)\Rightarrow \phi ( a , b^\star ) = \phi ( 1, z ) \, \, (\phi ( a^\star , b) = \phi ( 1, z )),$$ where $z\in A$ is fixed.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- 10.48550/arXiv.2202.01766
- arXiv:
- arXiv:2202.01766
- Bibcode:
- 2022arXiv220201766F
- Keywords:
-
- Mathematics - Functional Analysis;
- 46K05;
- 47B48
- E-Print:
- 5 pages