Map Equation Centrality: Communityaware Centrality based on the Map Equation
Abstract
To measure node importance, network scientists employ centrality scores that typically take a microscopic or macroscopic perspective, relying on node features or global network structure. However, traditional centrality measures such as degree centrality, betweenness centrality, or PageRank neglect the community structure found in realworld networks. To study node importance based on network flows from a mesoscopic perspective, we analytically derive a communityaware informationtheoretic centrality score based on network flow and the coding principles behind the map equation: map equation centrality. Map equation centrality measures how much further we can compress the network's modular description by not coding for random walker transitions to the respective node, using an adapted coding scheme and determining node importance from a network flowbased point of view. The informationtheoretic centrality measure can be determined from a node's local network context alone because changes to the coding scheme only affect other nodes in the same module. Map equation centrality is agnostic to the chosen network flow model and allows researchers to select the model that best reflects the dynamics of the process under study. Applied to synthetic networks, we highlight how our approach enables a more finegrained differentiation between nodes than nodelocal or networkglobal measures. Predicting influential nodes for two different dynamical processes on realworld networks with traditional and other communityaware centrality measures, we find that activating nodes based on map equation centrality scores tends to create the largest cascades in a linear threshold model.
 Publication:

arXiv eprints
 Pub Date:
 January 2022
 DOI:
 10.48550/arXiv.2201.12590
 arXiv:
 arXiv:2201.12590
 Bibcode:
 2022arXiv220112590B
 Keywords:

 Computer Science  Social and Information Networks;
 Physics  Physics and Society
 EPrint:
 Appl Netw Sci 7, 56 (2022)