A sharp criterion for zero modes of the Dirac equation
Abstract
It is shown that $\Vert A \Vert_{L^d}^2 \ge \frac{d}{d-2}\, S_d$ is a necessary condition for the existence of a nontrivial solution of the Dirac equation $\gamma \cdot (-i\nabla -A)\psi = 0$ in $d$ dimensions. Here, $S_d$ is the sharp Sobolev constant. If $d$ is odd and $\Vert A \Vert_{L^d}^2= \frac{d}{d-2}\, S_d$, then there exist vector potentials that allow for zero modes. A complete classification of these vector potentials and their corresponding zero modes is given.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2022
- DOI:
- 10.48550/arXiv.2201.03610
- arXiv:
- arXiv:2201.03610
- Bibcode:
- 2022arXiv220103610F
- Keywords:
-
- Mathematical Physics;
- Mathematics - Analysis of PDEs;
- Primary: 35F50;
- Secondary: 81V45;
- 47J10
- E-Print:
- LaTeX, 26 pages