Gravitating Electron Based on Overrotating Kerr-Newman Solution
Abstract
We consider a consistent with gravity electron based on the overrotating Kerr-Newman (KH) solution and show that the earlier KH electron models proposed by Carter, Israel and López in 1970–1990 should be modified by the Landau-Ginzburg theory, leading to a superconducting electron model consistent with gravity and quantum theory. Truncated by Israel and López, the second sheet of the KN solution is rearranged and represented in a mirror form as a sheet of the positron, so that the modified KN system forms a quantum electron-positron vacuum interacting with gravity. Regularization of the KN black hole solution creates two new important effects leading to a strong gravitational interaction that acts on the Compton scale contrary to the usual Planck scale of Schwarzschild gravity: (A)—gravitational frame-dragging creates two Wilson loops acting at two boundaries of the modified KN solution, and (B)—formation of the flat superconducting core of the regularized KN solution creates a superconducting electron-positron vacuum state. The Landau-Ginzburg model shows that Wilson loops determine phases of two Higgs fields forming superconducting vacuum state of the modified KN solution, quantum vacuum of the electron-positron pairs. The phases of these Higgs fields correspond to two light-like modes of a classical relativistic ring string. We come to the conclusion that the electron models considered by Israel and López are not complete and must be supplemented by a mirror structure that forms a quantum system consistent with QED.
- Publication:
-
Universe
- Pub Date:
- October 2022
- DOI:
- 10.3390/universe8110553
- Bibcode:
- 2022Univ....8..553B
- Keywords:
-
- nonperturbative electron;
- strong gravity;
- Kerr-Newman solution;
- Wilson loops;
- superconductivity;
- classical ring string;
- quantum particle