Quantum simulation of real-space dynamics
Abstract
Quantum simulation is a prominent application of quantum computers. While there is extensive previous work on simulating finite-dimensional systems, less is known about quantum algorithms for real-space dynamics. We conduct a systematic study of such algorithms. In particular, we show that the dynamics of a d-dimensional Schrödinger equation with η particles can be simulated with gate complexity O~(ηdFpoly(log(g′/ϵ))), where ϵ is the discretization error, g′ controls the higher-order derivatives of the wave function, and F measures the time-integrated strength of the potential. Compared to the best previous results, this exponentially improves the dependence on ϵ and g′ from poly(g′/ϵ) to poly(log(g′/ϵ)) and polynomially improves the dependence on T and d, while maintaining best known performance with respect to η. For the case of Coulomb interactions, we give an algorithm using η3(d+η)Tpoly(log(ηdTg′/(Δϵ)))/Δ one- and two-qubit gates, and another using η3(4d)d/2Tpoly(log(ηdTg′/(Δϵ)))/Δ one- and two-qubit gates and QRAM operations, where T is the evolution time and the parameter Δ regulates the unbounded Coulomb interaction. We give applications to several computational problems, including faster real-space simulation of quantum chemistry, rigorous analysis of discretization error for simulation of a uniform electron gas, and a quadratic improvement to a quantum algorithm for escaping saddle points in nonconvex optimization.
- Publication:
-
Quantum
- Pub Date:
- November 2022
- DOI:
- 10.22331/q-2022-11-17-860
- arXiv:
- arXiv:2203.17006
- Bibcode:
- 2022Quant...6..860C
- Keywords:
-
- Quantum Physics;
- Computer Science - Data Structures and Algorithms
- E-Print:
- Quantum 6, 860 (2022)