Microscopic collective inertial masses for nuclear reaction in the presence of nucleonic effective mass
Abstract
Collective inertial mass coefficients with respect to translational, relative, and rotational motions are microscopically calculated, along the collective reaction path selfconsistently determined, based on the adiabatic selfconsistent collective coordinate (ASCC) method. The impact of the timeodd component of the meanfield potential on the inertial masses are investigated. The results are compared with those calculated with the cranking formulas. The inertial masses based on the ASCC method reproduce the exact total nuclear mass for the translational motion as well as the exact reduced masses as the asymptotic values for the relative and rotational motions. In contrast, the cranking formulas fail to do so. This is due to the fact that the (local) Galilean invariance is properly restored in the ASCC method but violated in the cranking formulas. A model Hamiltonian for lowenergy nuclear reaction is constructed with the microscopically derived potentials and inertial masses. The astrophysical S factors are calculated, which indicates the importance of microscopic calculation of proper inertial masses.
 Publication:

Physical Review C
 Pub Date:
 March 2022
 DOI:
 10.1103/PhysRevC.105.034603
 arXiv:
 arXiv:2112.13317
 Bibcode:
 2022PhRvC.105c4603W
 Keywords:

 Nuclear Theory
 EPrint:
 12 pages, 9 figures