Surrogate gradients for analog neuromorphic computing
Abstract
Neuromorphic systems aim to accomplish efficient computation in electronics by mirroring neurobiological principles. Taking advantage of neuromorphic technologies requires effective learning algorithms capable of instantiating high-performing neural networks, while also dealing with inevitable manufacturing variations of individual components, such as memristors or analog neurons. We present a learning framework resulting in bioinspired spiking neural networks with high performance, low inference latency, and sparse spike-coding schemes, which also self-corrects for device mismatch. We validate our approach on the BrainScaleS-2 analog spiking neuromorphic system, demonstrating state-of-the-art accuracy, low latency, and energy efficiency. Our work sketches a path for building powerful neuromorphic processors that take advantage of emerging analog technologies.
- Publication:
-
Proceedings of the National Academy of Science
- Pub Date:
- January 2022
- DOI:
- Bibcode:
- 2022PNAS..11909194C