The impact of galactic feedback on the shapes of dark matter haloes
Abstract
We quantify the impact of galaxy formation on dark matter halo shapes using cosmological simulations at redshift z = 0. Using magnetohydrodynamic simulations from the IllustrisTNG project, we focus on haloes of mass $10^{10\!-\!14} \, \rm M_{\odot }$ from the 50 Mpc (TNG50) and 100 Mpc (TNG100) boxes and compare them to dark matter-only (DMO) analogues and other simulations, e.g. Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) and Evolution and Assembly of GaLaxies and their Environments (EAGLE). We further quantify the prediction uncertainty by varying the feedback models using smaller 25 ${\rm Mpc}\, h^{-1}$ boxes. We find that (i) galaxy formation results in rounder haloes compared to DMO simulations, in qualitative agreement with past results. Haloes of mass ${\approx }2\times 10^{12} \, \rm M_{\odot }$ are most spherical, with an average minor-to-major axial ratio of $\langle s \rangle$ ≈ 0.75 in the inner halo, an increase of 40 per cent compared to their DMO counterparts. No significant difference is present for low-mass $10^{10} \, \rm M_{\odot }$ haloes; (ii) stronger feedback, e.g. increasing galactic wind speed, reduces the impact of baryons; (iii) the inner halo shape correlates with the stellar mass fraction, explaining the dependence of halo shapes on feedback models; and (iv) the fiducial and weaker feedback models are most consistent with observational estimates of the Milky Way halo shape. At fixed halo mass, very diverse and possibly unrealistic feedback models all predict inner shapes closer to one another than to the DMO results. Because of the large halo-to-halo variation in halo shape, a larger observational sample is required to statistically distinguish different baryonic prescriptions.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- September 2022
- DOI:
- arXiv:
- arXiv:2109.00012
- Bibcode:
- 2022MNRAS.515.2681C
- Keywords:
-
- methods: numerical;
- methods: statistical;
- galaxies: formation;
- galaxies: haloes;
- dark matter;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 18 pages, 12 figures