Multiattention Network for Semantic Segmentation of Fine-Resolution Remote Sensing Images
Abstract
Semantic segmentation using fine-resolution remotely sensed images plays a critical role in many practical applications, such as urban planning, environmental protection, natural and anthropogenic landscape monitoring, etc. However, the automation of semantic segmentation, i.e., automatic categorization/labeling and segmentation is still a challenging task, particularly for fine-resolution images with huge spatial and spectral complexity. Addressing such a problem represents an exciting research field, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose an approach for automatic land segmentation based on the Feature Pyramid Network (FPN). As a classic architecture, FPN can build a feature pyramid with high-level semantics throughout. However, intrinsic defects in feature extraction and fusion hinder FPN from further aggregating more discriminative features. Hence, we propose an Attention Aggregation Module (AAM) to enhance multi-scale feature learning through attention-guided feature aggregation. Based on FPN and AAM, a novel framework named Attention Aggregation Feature Pyramid Network (A2-FPN) is developed for semantic segmentation of fine-resolution remotely sensed images. Extensive experiments conducted on three datasets demonstrate the effectiveness of our A2 -FPN in segmentation accuracy. Code is available at https://github.com/lironui/A2-FPN.
- Publication:
-
IEEE Transactions on Geoscience and Remote Sensing
- Pub Date:
- 2022
- DOI:
- 10.1109/TGRS.2021.3093977
- arXiv:
- arXiv:2102.07997
- Bibcode:
- 2022ITGRS..6093977L
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- doi:10.1109/TGRS.2021.3093977