Projected topological branes
Abstract
Nature harbors crystals of dimensionality (d) only up to three. Here we introduce the notion of projected topological branes (PTBs): Lower-dimensional branes embedded in higher-dimensional parent topological crystals, constructed via a geometric cut-and-project procedure on the Hilbert space of the parent lattice Hamiltonian. When such a brane is inclined at a rational or an irrational slope, either a new lattice periodicity or a quasicrystal emerges. The latter gives birth to topoquasicrystals within the landscape of PTBs. As such PTBs are shown to inherit the hallmarks, such as the bulk-boundary and bulk-dislocation correspondences, and topological invariant, of the parent topological crystals. We exemplify these outcomes by focusing on two-dimensional parent Chern insulators, leaving its signatures on projected one-dimensional (1D) topological branes in terms of localized endpoint modes, dislocation modes and the local Chern number. Finally, by stacking 1D projected Chern insulators, we showcase the imprints of three-dimensional Weyl semimetals in d = 2, namely the Fermi arc surface states and bulk chiral zeroth Landau level, responsible for the chiral anomaly. Altogether, the proposed PTBs open a realistic avenue to harness higher-dimensional (d > 3) topological phases in laboratory.
- Publication:
-
Communications Physics
- Pub Date:
- December 2022
- DOI:
- 10.1038/s42005-022-01006-x
- arXiv:
- arXiv:2112.06911
- Bibcode:
- 2022CmPhy...5..230P
- Keywords:
-
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Materials Science;
- Condensed Matter - Strongly Correlated Electrons;
- High Energy Physics - Theory;
- Mathematical Physics
- E-Print:
- Published version: 10 Pages, 7 Figures (Supplementary Information as Ancillary file)