Exploring entropy by counting microstates of the p-state paramagnet
Abstract
Moore and Schroeder proposed an effective approach to introducing entropy and the second law through computational study of models with easily countable states at fixed energy. However, such systems are rare: the only familiar examples are the Einstein solid and the two-state paramagnet, which limits the available questions for assignment or discussion. This work considers the more general p-state paramagnet and describes the modestly more complicated counting of its microstates. An instructor can draw on this family of systems to assign a variety of new problems or open-ended projects that students can complete with the help of a spreadsheet program or analytic calculation.
- Publication:
-
American Journal of Physics
- Pub Date:
- October 2022
- DOI:
- 10.1119/5.0061383
- arXiv:
- arXiv:2108.10340
- Bibcode:
- 2022AmJPh..90..736J
- Keywords:
-
- Physics - Physics Education;
- Condensed Matter - Statistical Mechanics
- E-Print:
- 10 pages, 5 figures. Revisions after peer review improved clarity throughout, moved sample code to an appendix and added an Excel implementation, and added a figure to clarify the combinatorial proofs. This version updates the published version to explicitly warn that floating point implementations of the formulas (like Excel's) are prone to error