Shock Induced Strong Substorms and Super Substorms: Preconditions and Associated Oxygen Ion Dynamics
Abstract
It is well known that the interaction between interplanetary (IP) shocks and the
Earth's magnetosphere would generate/excite various types of geomagnetic phenomena. Progresses have been made on the Earth's magnetospheric response to solar wind forcing in recent years in the aspects associated with magnetospheric substorms. Strong substorms and super substorms could be triggered externally by sudden changes of solar wind dynamic pressures. When a strong substorms (AE > 1000 nT) or super substorms (AE > 2000 nT) occurs, singly charged oxygen ions escaped from the Earth's ionosphere are found to be a dominated ion population in the magnetotail and in the inner magnetosphere—ring current region. The products of a strong substorms or super substorms- plasmoid, burst bulk flflows are also found to contain signifificant oxygen ions, even substorm injections can be dominated by oxygen ions. Thus, the magnetospheric dynamic must consider the contributions from the heavy oxygen ions. Also, the IP shock induced super substorms associated electromagnetic pulses (dB/dt) would shift the energetic particle (injections) inward and accelerate existing population signifificantly. Extensive attempts have also been made to understand how the solar wind energy couples with the magnetosphere to excite magnetospheric substorms. The statistical analysis shows that strong substorms (AE > 1000 nT) and super substorms (AE > 2000 nT) triggered by interplanetary shocks are most likely to occur under the southward interplanetary magnetic fifield (IMF) and fast solar wind pre-conditions. In addition, strong substorms after the IP shock arrival are more likely to occur when IMF points toward (away from) the Sun around spring (autumn) equinox, which can be ascribed to the Russell-McPherron effect. Thus, the southward IMF precondition of an interplanetary shock and the Russell-McPherron effect can be considered as precursors of a strong substorm and/or super substorm triggered by IP shocks. Moreover, the average duration of CME sheath region which is just behind the interplanetary shock are found to be about 7 hours. This indicates that southward IMF com pressed by shock could last at least 7 hours long in the downstream of the interplanetary shock (sheath region) if a southward IMF pre-condition is present, which explains why the largest substorm often occur in the CME sheath.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2022
- Bibcode:
- 2022AGUFMSM42C2186Z