A detailed analysis of the Gl 486 planetary system
Abstract
Context. The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R⊕ and 3.0 M⊕. It is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets.
Aims: To prepare for future studies, we aim to thoroughly characterise the planetary system with new accurate and precise data collected with state-of-the-art photometers from space and spectrometers and interferometers from the ground.
Methods: We collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X at the 8.1 m Gemini North telescope and CARMENES at the 3.5 m Calar Alto telescope, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed near-infrared interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes (AstroLAB, LCOGT, OSN, TJO). This extraordinary and rich data set was the input for our comprehensive analysis.
Results: From interferometry, we measure a limb-darkened disc angular size of the star Gl 486 at θLDD = 0.390 ± 0.018 mas. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius R* = 0.339 ± 0.015 R⊕. We also measure a stellar rotation period at Prot = 49.9 ± 5.5 days, an upper limit to its XUV (5-920 A) flux informed by new Hubble/STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Moreover, we imposed restrictive constraints on the presence of additional components, either stellar or sub-stellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at Rp = 1.343−0.062+0.063 R⊕ and Mp = 3.00−0.12+0.13 M⊕, with relative uncertainties of the planet radius and mass of 4.7% and 4.2%, respectively. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope (Webb) observations.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- September 2022
- DOI:
- 10.1051/0004-6361/202243548
- arXiv:
- arXiv:2206.09990
- Bibcode:
- 2022A&A...665A.120C
- Keywords:
-
- planetary systems;
- techniques: photometric;
- techniques: radial velocities;
- stars: individual: Gl 486;
- stars: late-type;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- A&