Exoplanet X-ray irradiation and evaporation rates with eROSITA
Abstract
High-energy irradiation is a driver for atmospheric evaporation and mass loss in exoplanets. This work is based on data from eROSITA, the soft X-ray instrument on board the Spectrum Roentgen Gamma mission, as well as on archival data from other missions. We aim to characterise the high-energy environment of known exoplanets and estimate their mass-loss rates. We use X-ray source catalogues from eROSITA, XMM-Newton, Chandra, and ROSAT to derive X-ray luminosities of exoplanet host stars in the 0.2-2 keV energy band with an underlying coronal, that is, optically thin thermal spectrum. We present a catalogue of stellar X-ray and EUV luminosities, exoplanetary X-ray and EUV irradiation fluxes, and estimated mass-loss rates for a total of 287 exoplanets, 96 of which are characterised for the first time based on new eROSITA detections. We identify 14 first-time X-ray detections of transiting exoplanets that are subject to irradiation levels known to cause observable evaporation signatures in other exoplanets. This makes them suitable targets for follow-up observations.
Full Table B.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A23- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- May 2022
- DOI:
- 10.1051/0004-6361/202141097
- arXiv:
- arXiv:2106.14550
- Bibcode:
- 2022A&A...661A..23F
- Keywords:
-
- stars: coronae;
- stars: activity;
- planet-star interactions;
- planets and satellites: atmospheres;
- X-rays: stars;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 13 pages, 11 figures. To appear on A&