On black holes with scalar hairs
Abstract
By using the Taylor series method and the solutiongenerating method, we construct exact black hole solutions with minimally coupled scalar field. We find that the black hole solutions can have many hairs except for the physical mass. These hairs come from the scalar potential. Unlike the mass, there is no symmetry corresponding to these hairs, thus they are not conserved and one cannot understand them as Noether charges. They arise as coupling constants. Although there are many hairs, the black hole has only one horizon. The scalar potential becomes negative for sufficient large $\phi$ (or in the vicinity of black hole singularity). Therefore, the noscalarhair theorem does not apply to our solutions since the latter does not obey the dominant energy condition. Although the scalar potential becomes negative for sufficient large $\phi$, the black holes are stable to both odd parity perturbations and scalar perturbations. As for even parity perturbations, we find there remains parameter space for the stability of the black holes. Finally, the black hole thermodynamics are developed.
 Publication:

arXiv eprints
 Pub Date:
 November 2021
 arXiv:
 arXiv:2111.11582
 Bibcode:
 2021arXiv211111582G
 Keywords:

 General Relativity and Quantum Cosmology
 EPrint:
 12 pages, 4 figures