The Jodrell bank glitch catalogue: 106 new rotational glitches in 70 pulsars
Abstract
Pulsar glitches are rapid spin-up events that occur in the rotation of neutron stars, providing a valuable probe into the physics of the interiors of these objects. Long-term monitoring of a large number of pulsars facilitates the detection of glitches and the robust measurements of their parameters. The Jodrell Bank pulsar timing programme regularly monitors more than 800 radio pulsars and has accrued, in some cases, over 50 yr of timing history on individual objects. In this paper, we present 106 new glitches in 70 radio pulsars as observed up to the end of 2018. For 70 per cent of these pulsars, the event we report is its only known glitch. For each new glitch, we provide measurements of its epoch, amplitude, and any detected changes to the spin-down rate of the star. Combining these new glitches with those listed in the Jodrell Bank glitch catalogue, we analyse a total sample of 543 glitches in 178 pulsars. We model the distribution of glitch amplitudes and spin-down rate changes using a mixture of two Gaussian components. We corroborate the known dependence of glitch rate and activity on pulsar spin-down rates and characteristic ages, and show that younger pulsars tend to exhibit larger glitches. Pulsars with spin-down rates between 10-14 and 10-10.5 Hz s-1 show a mean reversal of 1.8 per cent of their spin-down as a consequence of glitches. Our results are qualitatively consistent with the superfluid vortex unpinning models of pulsar glitches.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- March 2022
- DOI:
- arXiv:
- arXiv:2111.06835
- Bibcode:
- 2022MNRAS.510.4049B
- Keywords:
-
- methods: data analysis;
- methods: statistical;
- stars: neutron;
- pulsars: general;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 14 pages, 17 figures, 3 tables. Accepted for publication in MNRAS