Flares Big and Small: a K2 and TESS View of ASAS-SN Superflares
Abstract
We investigate the flare-frequency distributions of 5 M-dwarfs that experienced superflares with energies in excess of $10^{33}$ erg detected by ASAS-SN. We use K2 and TESS short-cadence observations along with archival ASAS-SN data to categorise the flaring behaviour of these stars across a range of flare energies. We were able to extract a rotation period for 4 of the stars. They were all fast rotators ($P_{\mathrm{rot}} \leq 6 \textrm{d}$), implying relative youth. We find that the flare-frequency distributions for each of the stars are well fit by a power-law, with slopes between $\alpha = 1.22$ and $\alpha= 1.82$. These slopes are significantly flatter than those of fast-rotating M-dwarfs not selected for their superflaring activity, corresponding to an increased number of high energy flares. Despite our specific selection of superflaring stars with shallow flare-rate distributions and more power in higher-energy flares, we find that the implied UV flux is insufficient to deplete the ozone of earth-sized planets in the habitable zone around these stars. Furthermore, we find that the flares detected on the stars in our sample are insufficient to produce the UV flux needed to fuel abiogenetic processes. These results imply that given available models, even M-dwarfs selected for extreme flaring properties may have insufficient UV emission from flares to impact exolife on earth-sized planets in the habitable zones around M-dwarfs.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2021
- DOI:
- arXiv:
- arXiv:2109.04501
- Bibcode:
- 2021arXiv210904501Z
- Keywords:
-
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 15 Pages, 8 Figures, 3 Tables. Will be submitted to the Astrophysical Journal. Comments welcome