$*$-Lie-type maps on $C^*$-algebras
Abstract
Let $\mathfrak{A}$ and $\mathfrak{A}'$ be two $C^*$-algebras with identities $I_{\mathfrak{A}}$ and $I_{\mathfrak{A}'}$, respectively, and $P_1$ and $P_2 = I_{\mathfrak{A}} - P_1$ nontrivial symmetric projections in $\mathfrak{A}$. In this paper we study the characterization of multiplicative $*$-Lie-type maps. In particular, if $\mathcal{M}$ is a factor von Neumann algebra then every complex scalar multiplication bijective unital multiplicative $*$-Lie-type map is $*$-isomorphism.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2021
- DOI:
- 10.48550/arXiv.2108.00025
- arXiv:
- arXiv:2108.00025
- Bibcode:
- 2021arXiv210800025N
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Rings and Algebras;
- 47B48;
- 46L05
- E-Print:
- 15. arXiv admin note: text overlap with arXiv:2005.11430