Optimal Transmit Beamforming for Integrated Sensing and Communication
Abstract
This paper studies the transmit beamforming in a downlink integrated sensing and communication (ISAC) system, where a base station (BS) equipped with a uniform linear array (ULA) sends combined information-bearing and dedicated radar signals to simultaneously perform downlink multiuser communication and radar target sensing. Under this setup, we maximize the radar sensing performance (in terms of minimizing the beampattern matching errors or maximizing the minimum weighted beampattern gains), subject to the communication users' minimum signal-to-interference-plus-noise ratio (SINR) requirements and the BS's transmit power constraints. In particular, we consider two types of communication receivers, namely Type-I and Type-II receivers, which do not have and do have the capability of cancelling the interference from the {\emph{a-priori}} known dedicated radar signals, respectively. Under both Type-I and Type-II receivers, the beampattern matching and minimum weighted beampattern gain maximization problems are globally optimally solved via applying the semidefinite relaxation (SDR) technique together with the rigorous proof of the tightness of SDR for both Type-I and Type-II receivers under the two design criteria. It is shown that at the optimality, radar signals are not required with Type-I receivers under some specific conditions, while radar signals are always needed to enhance the performance with Type-II receivers. Numerical results show that the minimum weighted beampattern gain maximization leads to significantly higher beampattern gains at the worst-case sensing angles with a much lower computational complexity than the beampattern matching design. We show that by exploiting the capability of canceling the interference caused by the radar signals, the case with Type-II receivers results in better sensing performance than that with Type-I receivers and other conventional designs.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2021
- DOI:
- 10.48550/arXiv.2104.11871
- arXiv:
- arXiv:2104.11871
- Bibcode:
- 2021arXiv210411871H
- Keywords:
-
- Computer Science - Information Theory
- E-Print:
- Accepted by IEEE Transactions on Vehicular Technology