Collective-Mode Enhanced Matter-Wave Optics
Abstract
In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to 3 /2 kB.3 8-7+6 pK . Our method paves the way for free-fall experiments lasting ten or more seconds as envisioned for tests of fundamental physics and high-precision BEC interferometry, as well as opens up a new kinetic energy regime.
- Publication:
-
Physical Review Letters
- Pub Date:
- September 2021
- DOI:
- 10.1103/PhysRevLett.127.100401
- Bibcode:
- 2021PhRvL.127j0401D