A Two-stage Deep Learning Detection Classifier for the ATLAS Asteroid Survey
Abstract
In this paper we present a two-step neural network model to separate detections of solar system objects from optical and electronic artifacts in data obtained with the "Asteroid Terrestrial-impact Last Alert System" (ATLAS), a near-Earth asteroid sky survey system. A convolutional neural network is used to classify small "postage-stamp" images of candidate detections of astronomical sources into eight classes, followed by a multi-layered perceptron that provides a probability that a temporal sequence of four candidate detections represents a real astronomical source. The goal of this work is to reduce the time delay between Near-Earth Object (NEO) detections and submission to the Minor Planet Center. Due to the rare and hazardous nature of NEOs, a low false negative rate is a priority for the model. We show that the model reaches 99.6% accuracy on real asteroids in ATLAS data with a 0.4% false negative rate. Deployment of this model on ATLAS has reduced the amount of NEO candidates that astronomers must screen by 90%, thereby bringing ATLAS one step closer to full autonomy.
- Publication:
-
Publications of the Astronomical Society of the Pacific
- Pub Date:
- March 2021
- DOI:
- arXiv:
- arXiv:2101.08912
- Bibcode:
- 2021PASP..133c4501C
- Keywords:
-
- Convolutional neural networks;
- Asteroids;
- Sky surveys;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Instrumentation and Methods for Astrophysics;
- Computer Science - Machine Learning
- E-Print:
- 15 pages, 10 figures