Cosmic rays and non-thermal emission in simulated galaxies - I. Electron and proton spectra compared to Voyager-1 data
Abstract
Current-day cosmic ray (CR) propagation studies use static Milky Way models and fit parametrized source distributions to data. Instead, we use three-dimensional magnetohydrodynamic (MHD) simulations of isolated galaxies with the moving-mesh code AREPO that self-consistently accounts for hydrodynamic effects of CR protons. In post-processing, we calculate their steady-state spectra, taking into account all relevant loss processes. We show that this steady-state assumption is well justified in the disc and generally for regions that emit non-thermal radio and gamma rays. Additionally, we model the spectra of primary electrons, accelerated by supernova remnants, and secondary electrons and positrons produced in hadronic CR proton interactions with the gas. We find that proton spectra above 10 GeV only weakly depend on galactic radius, while they acquire a radial dependence at lower energies due to Coulomb interactions. Radiative losses steepen the spectra of primary CR electrons in the central galactic regions, while diffusive losses dominate in the outskirts. Secondary electrons exhibit a steeper spectrum than primaries because they originate from the transported steeper CR proton spectra. Consistent with Voyager-1 and AMS-02 data, our models (i) show a turnover of proton spectra below GeV energies due to Coulomb interactions so that electrons start to dominate the total particle spectra and (ii) match the shape of the positron fraction up to 10 GeV. We conclude that our steady-state CR modelling in MHD CR galaxy simulations is sufficiently realistic to capture the dominant transport effects shaping their spectra, arguing for a full MHD treatment to accurately model CR transport in the future.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- August 2021
- DOI:
- 10.1093/mnras/stab1324
- arXiv:
- arXiv:2105.10509
- Bibcode:
- 2021MNRAS.505.3273W
- Keywords:
-
- astroparticle physics;
- MHD;
- methods: numerical;
- cosmic rays;
- local interstellar matter;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 23 pages, 17 figures, accepted to MNRAS