Global simulations of marine plastic transport show plastic trapping in coastal zones
Abstract
Global coastlines potentially contain significant amounts of plastic debris, with harmful implications for marine and coastal ecosystems, fisheries and tourism. However, the global amount, distribution and origin of plastic debris on beaches and in coastal waters is currently unknown. Here we analyze beaching and resuspension scenarios using a Lagrangian particle transport model. Throughout the first 5 years after entering the ocean, the model indicates that at least 77% of positively buoyant marine plastic debris (PBMPD) released from land-based sources is either beached or floating in coastal waters, assuming no further plastic removal from beaches or the ocean surface. The highest concentrations of beached PBMPD are found in Southeast Asia, caused by high plastic inputs from land and limited offshore transport, although the absolute concentrations are generally overestimates compared to field measurements. The modeled distribution on a global scale is only weakly influenced by local variations in resuspension rates due to coastal geomorphology. Furthermore, there are striking differences regarding the origin of the beached plastic debris. In some exclusive economic zones (EEZ), such as the Indonesian Archipelago, plastic originates almost entirely from within the EEZ while in other EEZs, particularly remote islands, almost all beached plastic debris arrives from remote sources. Our results highlight coastlines and coastal waters as important reservoirs of marine plastic debris and limited transport of PBMPD between the coastal zone and the open ocean.
- Publication:
-
Environmental Research Letters
- Pub Date:
- June 2021
- DOI:
- Bibcode:
- 2021ERL....16f4053O
- Keywords:
-
- ocean modeling;
- marine plastic pollution;
- Lagrangian modeling;
- global ocean plastic transport;
- beached marine plastic