Earth's Albedo and Its Symmetry
Abstract
The properties of Earth's albedo and its symmetries are analyzed using twenty years of space-based Energy Balanced And Filled product of Clouds and the Earth's Radiant Energy System measurements. Despite surface asymmetries, top of the atmosphere temporally & hemispherically averaged reflected solar irradiance R appears symmetric over Northern/Southern hemispheres. This is confirmed with the use of surrogate time-series, which provides margins of 0.1±0.28Wm-2 for possible hemispheric differences supported by Clouds and Earth's Radiant System data. R time-series are further analyzed by decomposition into a seasonal (yearly and half yearly) cycle and residuals. Variability in the reflected solar irradiance is almost entirely (99%) due to the seasonal variations, mostly due to seasonal variations in insolation. The residuals of hemispherically averaged R are not only small, but also indistinguishable from noise, and thus not correlated across hemispheres. This makes yearly and sub-yearly timescales unlikely as the basis for a symmetry-establishing mechanism. The residuals however contain a global trend that is large, as compared to expected albedo feedbacks. It is also hemispherically symmetric, and thus indicates the possibility of a symmetry enforcing mechanism at longer timescales. To pinpoint precisely which parts of the Earth system establish the hemispheric symmetry, we create an energetically consistent cloud-albedo field from the data. We show that the surface albedo asymmetry is compensated by asymmetries between clouds over extra-tropical oceans, with southern hemispheric storm-tracks being 11% cloudier than their northern hemisphere counterparts. This again indicates that, assuming the albedo symmetry is not a result of chance, its mechanism likely operates on large temporal and spatial scales.
- Publication:
-
AGU Advances
- Pub Date:
- September 2021
- DOI:
- 10.1029/2021AV000440
- Bibcode:
- 2021AGUA....200440D
- Keywords:
-
- albedo;
- energy balance;
- hemispheric symmetry;
- cloud albedo;
- CERES