The metal-poor end of the Spite plateau. II. Chemical and dynamical investigation
Abstract
Context. The study of old, metal-poor stars deepens our knowledge on the early stages of the universe. In particular, the study of these stars gives us a valuable insight into the masses of the first massive stars and their emission of ionising photons.
Aims: We present a detailed chemical analysis and determination of the kinematic and orbital properties of a sample of 11 dwarf stars. These are metal-poor stars, and a few of them present a low lithium content. We inspected whether the other elements also present anomalies.
Methods: We analysed the high-resolution UVES spectra of a few metal-poor stars using the Turbospectrum code to synthesise spectral lines profiles. This allowed us to derive a detailed chemical analysis of Fe, C, Li, Na, Mg, Al, Si, CaI, CaII, ScII, TiII, Cr, Mn, Co, Ni, Sr, and Ba.
Results: We find excellent coherence with the reference metal-poor First Stars sample. The lithium-poor stars do not present any anomaly of the abundance of the elements other than lithium. Among the Li-poor stars, we show that CS 22882-027 is very probably a blue-straggler. The star CS 30302-145, which has a Li abundance compatible with the plateau, has a very low Si abundance and a high Mn abundance. In many aspects, it is similar to the α-poor star HE 1424-0241, but it is less extreme. It could have been formed in a satellite galaxy and later been accreted by our Galaxy. This hypothesis is also supported by its kinematics.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- October 2021
- DOI:
- arXiv:
- arXiv:2110.00243
- Bibcode:
- 2021A&A...654A.170M
- Keywords:
-
- stars: abundances;
- stars: Population II;
- line: formation;
- line: profiles;
- Galaxy: abundances;
- Galaxy: evolution;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Astronomy and Astrophysics - A&