A MeerKAT view of pre-processing in the Fornax A group
Abstract
We present MeerKAT neutral hydrogen (H I) observations of the Fornax A group, which is likely falling into the Fornax cluster for the first time. Our H I image is sensitive to 1.4 × 1019 atoms cm−2 over 44.1 km s−1, where we detect H I in 10 galaxies and a total of (1.12 ± 0.02) × 109 M⊙ of H I in the intra-group medium (IGM). We search for signs of pre-processing in the 12 group galaxies with confirmed optical redshifts that reside within the sensitivity limit of our H I image. There are 9 galaxies that show evidence of pre-processing and we classify each galaxy into their respective pre-processing category, according to their H I morphology and gas (atomic and molecular) scaling relations. Galaxies that have not yet experienced pre-processing have extended H I discs and a high H I content with a H2-to-H I ratio that is an order of magnitude lower than the median for their stellar mass. Galaxies that are currently being pre-processed display H I tails, truncated H I discs with typical gas fractions, and H2-to-H I ratios. Galaxies in the advanced stages of pre-processing are the most H I deficient. If there is any H I, they have lost their outer H I disc and efficiently converted their H I to H2, resulting in H2-to-H I ratios that are an order of magnitude higher than the median for their stellar mass. The central, massive galaxy in our group (NGC 1316) underwent a 10:1 merger ∼2 Gyr ago and ejected 6.6−11.2 × 108 M⊙ of H I, which we detect as clouds and streams in the IGM, some of which form coherent structures up to ∼220 kpc in length. We also detect giant (∼100 kpc) ionised hydrogen (Hα) filaments in the IGM, likely from cool gas being removed (and subsequently ionised) from an in-falling satellite. The Hα filaments are situated within the hot halo of NGC 1316 and there are localised regions that contain H I. We speculate that the Hα and multiphase gas is supported by magnetic pressure (possibly assisted by the NGC 1316 AGN), such that the hot gas can condense and form H I that survives in the hot halo for cosmological timescales.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- April 2021
- DOI:
- 10.1051/0004-6361/202039898
- arXiv:
- arXiv:2101.10347
- Bibcode:
- 2021A&A...648A..32K
- Keywords:
-
- galaxies: groups: general;
- galaxies: groups: individual: Fornax A;
- galaxies: evolution;
- galaxies: interactions;
- galaxies: ISM;
- radio lines: galaxies;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 18 pages, 9 figured. Accepted for publication in Astronomy and Astrophysics (A&