Fractional parts of non-integer powers of primes. II
Abstract
We continue to study the distribution of prime numbers $p$, satisfying the condition $\{ p^{\alpha} \} \in I \subset [0; 1)$, in arithmetic progressions. In the paper, we prove an analogue of Bombieri-Vinogradov theorem for $0 < \alpha < 1/9$ with the level of distribution $\theta = 2/5 - (3/5) \alpha$, which improves the previous result corresponding to $\theta \leq 1/3$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2020
- DOI:
- 10.48550/arXiv.2011.11790
- arXiv:
- arXiv:2011.11790
- Bibcode:
- 2020arXiv201111790S
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 35 pages