Absolute Hodge and $\ell$-adic Monodromy
Abstract
Let $\mathbb{V}$ be a motivic variation of Hodge structure on a $K$-variety $S$, let $\mathcal{H}$ be the associated $K$-algebraic Hodge bundle, and let $\sigma \in \textrm{Aut}(\mathbb{C}/K)$ be an automorphism. The absolute Hodge conjecture predicts that given a Hodge vector $v \in \mathcal{H}_{\mathbb{C}, s}$ above $s \in S(\mathbb{C})$ which lies inside $\mathbb{V}_{s}$, the conjugate vector $v_{\sigma} \in \mathcal{H}_{\mathbb{C}, s_{\sigma}}$ is Hodge and lies inside $\mathbb{V}_{s_{\sigma}}$. We study this problem in the situation where we have an algebraic subvariety $Z \subset S_{\mathbb{C}}$ containing $s$ whose algebraic monodromy group $\mathbf{H}_Z$ fixes $v$. Using relationships between $\mathbf{H}_Z$ and $\mathbf{H}_{Z_{\sigma}}$ coming from the theories of complex and $\ell$-adic local systems, we establish a criterion that implies the absolute Hodge conjecture for $v$ subject to a group-theoretic condition on $\mathbf{H}_{Z}$. We then use our criterion to establish new cases of the absolute Hodge conjecture.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2020
- arXiv:
- arXiv:2011.10703
- Bibcode:
- 2020arXiv201110703U
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Number Theory
- E-Print:
- Comments welcome!