Learning to Summarize Long Texts with Memory Compression and Transfer
Abstract
We introduce Mem2Mem, a memory-to-memory mechanism for hierarchical recurrent neural network based encoder decoder architectures and we explore its use for abstractive document summarization. Mem2Mem transfers "memories" via readable/writable external memory modules that augment both the encoder and decoder. Our memory regularization compresses an encoded input article into a more compact set of sentence representations. Most importantly, the memory compression step performs implicit extraction without labels, sidestepping issues with suboptimal ground-truth data and exposure bias of hybrid extractive-abstractive summarization techniques. By allowing the decoder to read/write over the encoded input memory, the model learns to read salient information about the input article while keeping track of what has been generated. Our Mem2Mem approach yields results that are competitive with state of the art transformer based summarization methods, but with 16 times fewer parameters
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2020
- DOI:
- 10.48550/arXiv.2010.11322
- arXiv:
- arXiv:2010.11322
- Bibcode:
- 2020arXiv201011322P
- Keywords:
-
- Computer Science - Computation and Language;
- Computer Science - Machine Learning