On the relationship between mean observations, spatial averages and the Dyer-Roeder approximation in Einstein-Straus models
Abstract
The redshift and redshift-distance relation in different Einstein-Straus models are considered. Specifically, the mean of these observables along 1000 light rays in different specific models are compared with predictions based on the Dyer-Roeder approximation and relations based on spatial averaging. It is shown that in certain limits, including those studied earlier in the literature, the Dyer-Roeder approximation and relations based on spatial averages agree with each other to a good precision regarding the redshift and redshift-distance relation and make good predictions of the mean of the exact relations. In limits where the two methods disagree, the Dyer-Roeder approximation clearly yields the better approximation of the true mean. This is explained by demonstrating the effect of boundary terms and integrated Sachs-Wolfe contributions but it is pointed out that the result seems to be valid for other Swiss-cheese models as well. An expression for the redshift drift in Einstein-Straus models is presented and used for studying the behavior of this quantity in particular Einstein-Straus models.
- Publication:
-
Journal of Cosmology and Astroparticle Physics
- Pub Date:
- November 2020
- DOI:
- 10.1088/1475-7516/2020/11/061
- arXiv:
- arXiv:2010.04500
- Bibcode:
- 2020JCAP...11..061K
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 23 pages plus references, 8 captioned figures. Accepted for publication in JCAP.v2: Typos in eq. 1.1 and 1.2 fixed. 1 reference added (to match published version)