A regularity criterion for three-dimensional micropolar fluid equations in Besov spaces of negative regular indices
Abstract
In this article, we study regularity criteria for the 3D micropolar fluid equations in terms of one partial derivative of the velocity. It is proved that if \begin{equation*} \int^{T}_{0}\|\partial_{3}u\|^{\frac{2}{1-r}}_{\dot{B}^{-r}_{\infty,\infty}} dt<\infty \quad \text{with} \quad 0< r<1, \end{equation*} then, the solutions of the micropolar fluid equations actually are smooth on $(0, T)$. This improves and extends many previous results.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2020
- DOI:
- 10.48550/arXiv.2006.00524
- arXiv:
- arXiv:2006.00524
- Bibcode:
- 2020arXiv200600524W
- Keywords:
-
- Mathematics - Analysis of PDEs