Abstract
Several dozen optical echelle spectra demonstrate that HR 6819 is a hierarchical triple. A classical Be star is in a wide orbit with an unconstrained period around an inner 40 d binary consisting of a B3 III star and an unseen companion in a circular orbit. The radial-velocity semi-amplitude of 61.3 km s-1 of the inner star and its minimum (probable) mass of 5.0 M⊙ (6.3 ± 0.7 M⊙) imply a mass of the unseen object of ≥4.2 M⊙ (≥5.0 ± 0.4 M⊙), that is, a black hole (BH). The spectroscopic time series is stunningly similar to observations of LB-1. A similar triple-star architecture of LB-1 would reduce the mass of the BH in LB-1 from ∼70 M⊙ to a level more typical of Galactic stellar remnant BHs. The BH in HR 6819 probably is the closest known BH to the Sun, and together with LB-1, suggests a population of quiet BHs. Its embedment in a hierarchical triple structure may be of interest for models of merging double BHs or BH + neutron star binaries. Other triple stars with an outer Be star but without BH are identified; through stripping, such systems may become a source of single Be stars.
The authors dedicate this Letter to the memory of Stan Štefl (1955-2014) in sadness and grateful appreciation of his never-tiring alertness that also triggered this work.
Based partly on observations collected at the European Southern Observatory, Chile (Prop. Nos. 63.H-0080 and 073.D-0274).