Stellar property statistics of massive haloes from cosmological hydrodynamics simulations: common kernel shapes
Abstract
We study stellar property statistics, including satellite galaxy occupation, of haloes in three cosmological hydrodynamics simulations: BAHAMAS + MACSIS, IllustrisTNG, and Magneticum Pathfinder. Applying localized linear regression, we extract halo mass-conditioned normalizations, slopes, and intrinsic covariance for (i) Nsat, the number of stellar mass-thresholded satellite galaxies within radius R200c of the halo; (ii) M⋆,tot, the total stellar mass within that radius, and (iii) M⋆,BCG, the gravitationally bound stellar mass of the central galaxy within a 100 kpc radius. The parameters show differences across the simulations, in part from numerical resolution, but there is qualitative agreement for the Nsat - M⋆,BCG correlation. Marginalizing over Mhalo, we find the Nsat kernel, p(ln Nsat | Mhalo,z) to be consistently skewed left in all three simulations, with skewness parameter γ = -0.91 ± 0.02, while the M⋆,tot kernel shape is closer to lognormal. The highest resolution simulations find γ ≃ -0.8 for the z = 0 shape of the M⋆,BCG kernel. We provide a Gaussian mixture fit to the low-redshift Nsat kernel as well as local linear regression parameters tabulated for Mhalo > 1013.5 M⊙ in all simulations.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- June 2020
- DOI:
- arXiv:
- arXiv:2001.02283
- Bibcode:
- 2020MNRAS.495..686A
- Keywords:
-
- methods: statistical;
- galaxies: clusters: general;
- galaxies: evolution;
- galaxies: haloes;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 17 pages, 15 figures